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Abstract
We discuss the spectrum of longitudinal propagating collective excitations in
a liquid metallic alloy Li4Pb and a Lennard-Jones binary mixture obtained
by an eight-variable approach of generalized collective modes. Reported
wavenumber-dependent amplitudes of contributions from high- and low-
frequency propagating excitations to dynamical structure factors in Li4Pb
permit a new viewpoint on the ‘fast sound’ phenomenon. A three-variable
analytical model for slow and fast mass–concentration fluctuations is used
for explanation of the high-frequency branch in the long-wavelength region.
An additional analysis of longitudinal dynamics in liquid binary mixtures
with different mass ratio of components permits us to establish a tendency
in frequency and damping coefficients of the high-frequency propagating
excitations.

1. Introduction

Collective dynamics in liquids is a challenging problem of modern statistical physics. So far
the hydrodynamic approach remains the only reliable theoretical model; it yields analytical
expressions for time correlation functions and dynamical eigenmodes, although it is valid only
in the limit of small wavenumbers k and frequencies ω. For binary liquids the dominant
dynamical processes that determine the collective dynamics beyond the hydrodynamic region
are still under discussion. For the longitudinal dynamics it is generally accepted that there
exist at least two branches of propagating excitations beyond the hydrodynamic region, which
in the short-wavelength region describe the partial dynamics of heavy and light components
in a binary liquid mixture. However, regarding the dispersion laws of these two branches by
approaching the hydrodynamic region there is no clear model for describing the crossover in
dispersion from the molecular region to the hydrodynamic one. Especially big problems arise
for mixtures composed of disparate mass particles—up to date it is not finally established what
is going on with the high-frequency propagating branch in the long-wavelength limit. Hence,
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the problem of ‘fast sound’ [1] reported over almost 20 years in the literature for the case of
a metallic melt Li4Pb is still far from being finally solved. It is also not known what the role
of concentration is in the damping coefficients of high-frequency branch, how the mass ratio
affects the width of hydrodynamic region, or how the dispersion law will change by decreasing
the concentration of relevant species down to the impurity limit.

One of the most natural ways for exploring the collective dynamics in binary liquids is
to apply as much as possible simple theoretical models and reliable schemes for analysis of
computer experiments in order to clarify the dominant relaxing and propagating processes in a
wide range of wavenumbers and frequencies, including the hydrodynamic region. One of the
most promising schemes for analysis of the collective dynamics in liquids is a parameter-free
approach of generalized collective modes (GCM) [2], which combines molecular dynamics
(MD) simulations with the eigenvalue problem for a generalized hydrodynamic matrix [3, 4].
Recently, the simplest dynamical processes in the transverse dynamics of a binary equimolar
liquid KrAr [5, 6] were studied using the GCM approach. A clear picture of transverse
dynamics in terms of two branches of propagating excitations was obtained: in the short-
wavelength region the branches have partial character describing the dynamics of light and
heavy components, while on approaching the long-wavelength region the low-frequency
branch obeys the shear wave dispersion law with a propagation gap in the k → 0 limit and
high-frequency branch describes optic phonon-like excitations. A simple theoretical model for
separated transverse mass–concentration current fluctuations permitted the origin of the optic-
like branch in the long-wavelength limit to be explained, and light to be shed on the physical
processes causing the damping of transverse optic-like excitations [5, 6]. Later a similar three-
variable dynamical model of mass–concentration fluctuations was solved analytically in the
long-wavelength limit for the case of longitudinal dynamics [7]. It was remarkable that for
the longitudinal case exactly the same mechanism of damping for the optic-like excitations
was obtained. It was shown that high mutual diffusion and the tendency to demixing when the
atoms are mainly surrounded by like particles cause strong damping of optic-like excitations
and can even suppress them. Such a mechanism of suppressing the optic-like propagating
branch seems to work in a gaseous mixture He0.65Ne0.35 [4, 7], where on approaching the
small-k region the high-frequency branch vanishes from the spectrum.

Thus, the eigenmode analysis clearly indicates that in the long-wavelength region there
must exist an optic-like branch of mass–concentration waves unless some specific processes
in the liquid (like high diffusion or demixing tendency) suppress it. However, in the literature
there exists a number of reports on dispersion curves in binary liquids estimated numerically
from partial current spectral functions Cαα(k, ω), α = A, B obtained in MD [8–11], and
the general picture of dispersion curves obtained in these studies is a merger of two branches,
high- and low-frequency ones,on approaching the long-wavelength region, into a single branch
with linear dispersion corresponding to hydrodynamic sound. In figure 1, we show that for the
equimolar Lennard-Jones KrAr liquid mixture the spectrum of propagating excitations obtained
numerically from the maxima positions of partial spectral functions Cαα(k, ω), α = Kr, Ar, is
very similar to these results [8–11]. Hence, even for the case of small mass ratio (R = 2.098
for KrAr) following the numerical results there is a temptation to talk about ‘fast sound modes’,
while the analytical parameter-free GCM analysis of eigenmodes in liquid KrAr [7] clearly
gives two kinds of propagating solutions in long-wavelength region: hydrodynamic sound
and kinetic optic phonon-like excitations. The latter have finite damping coefficient in the
long-wavelength limit and therefore their contributions to Cαα(k, ω) become extremely small
in comparison with contributions from hydrodynamic modes in the k → 0 limit.

The goal of this study is to obtain the spectrum of collective propagating eigenmodes
in the liquid metallic ‘fast sound’ alloy Li4Pb and analyse its high-frequency branch. The
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Figure 1. Maxima positions of partial spectral functions Cαα(k, ω), (α = Kr, Ar) against
wavenumber for a Lennard-Jones equimolar liquid KrAr at 116 K.

dependence of frequency and damping coefficients for high-frequency excitations on the mass
ratio of the components will be discussed with an example of a GCM study of Lennard-
Jones liquid mixtures. The remaining part of the paper is organized as follows. In section 2
we describe the basic ideas of the GCM approach and give details of our MD simulations.
In section 3 we present the numerical results, obtained for Li4Pb and Lennard-Jones liquid
mixtures within the eight-variable GCM approach. The dependence of frequency and damping
of optic-like excitations on mass ratio will be discussed in section 4 using an analytical solution
for a three-variable dynamical model, and the following section contains our conclusions of
this study.

2. Method

2.1. Approach of generalized collective modes

The approach of generalized collective modes consists of solving the generalized Langevin
equation in matrix form in terms of dynamical eigenmodes. For a chosen basis set of Nv

dynamical variables a generalized hydrodynamic matrix T(k) in Markovian approximation
reads (see [3, 4] for details of the GCM approach)

T(k) = F(k, t = 0)F̃−1(k, z = 0), (1)

where F(k, t) and F̃(k, z) are the Nv × Nv matrices of time correlation functions and their
Laplace transforms, respectively. Usually the basis set of dynamical variables for binary liquids
is constructed from the hydrodynamic set of four variables (in the case of longitudinal dynamics
of a binary liquid) by extending it with more short-time dynamical variables, which describe
orthogonal processes (in the sense of thermodynamic fluctuation theory) to hydrodynamic
ones. Such extended dynamical variables are usually represented by time derivatives of the
hydrodynamic variables. Among the Nv eigenmodes the lowest four correspond in the long-
wavelength region to hydrodynamic modes, while the other Nv − 4 describe kinetic collective
propagating or relaxing processes with finite nonzero damping coefficient in the k → 0 limit.
The eigenvalues and eigenvectors of the generalized hydrodynamic matrix T(k) permit the
calculation of GCM-replicas of the relevant time correlation functions via [12]

FGCM
αβ (k, t) =

Nv∑
j=1

G j
αβ(k)e−z j (k)t , (2)
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with the eigenvalues z j(k) and weight coefficients G j
αβ(k) defining the contribution of each

generalized collective mode to the time correlation function. Note that for the hydrodynamic
basis set of four/three variables in the case of longitudinal dynamics in binary/pure liquids
the expressions (1) and (2) have exactly the hydrodynamic form [13]. For the case of an
extended basis set with short-time dynamical variables in addition to hydrodynamic ones these
expressions represent the generalization of hydrodynamics onto the case of existence of kinetic
collective excitations in the liquid with finite lifetime, that is supposed to represent correctly
the shape of the relevant time correlation functions (and dynamical structure factors) beyond
the hydrodynamic region.

A connection between the GCM approach and experimentally accessible quantities is
made via the expression for a set of dynamical structure factors

Sαβ(k, ω)

Sαβ(k)
=

Nr∑
j

A j
αβ

d j(k)

ω2 + d2
j (k)

+
Np∑
j,±

B j
αβσ j(k) + D j

αβ(ω ± ω j (k))

(ω ± ω j (k))2 + σ 2
j (k)

,

α, β = {ai(k, t)}, (3)

which generalizes the four-term hydrodynamic expressions onto the more general case of
existing Nr relaxing and Np pairs of propagating generalized hydrodynamic and kinetic
collective excitations, Nr + 2Np = Nv. The amplitudes of the mode contributions
A j(k), B j(k), D j (k) (mode strengths as named in [14]) from the collective modes can be
estimated numerically from G j

αβ(k) in (2) for any k-point sampled in a real or computer
experiment, that permits representation of the measured dynamical structure factors Sαβ(k, ω)

in terms of separated mode contributions being extremely important for experimentalists.
The generalized expression for the dynamical structure factors (3) permits a comparison

with the numerical approach of dispersion estimation of the collective excitations in binary
liquids via the maxima positions of the current spectral functions Cαα(k, ω). These spectral
functions according to (3) can be represented as

Cαα(k, ω) ∼
Nr∑
j

ω2

k2
A j

αα(k)
d j(k)

ω2 + d2
j (k)

+
Np∑
j,±

ω2

k2

B j
αα(k)σ j (k) + D j

αα(k)(ω ± ω j(k))

(ω ± ω j (k))2 + σ 2
j (k)

, (4)

where the subindex α represents partial currents. Hence, in general, several relaxing and at
least two pairs of propagating modes contribute to the shape of Cαα(k, ω) in binary liquids
at any k-point. At k → 0 the mode contributions from kinetic processes should tend to zero
not more slowly than k2, and only hydrodynamic collective modes with the only propagating
branch of sound excitations contribute to the shape of Cαα(k, ω). This would explain why
the two dispersion curves shown in figure 1 merge in the long-wavelength region into a single
sound-like dispersion law.

Only the knowledge of all the important mode contributions A j (k), B j(k), D j (k) can
establish the correspondence between the maxima positions of Cαα(k, ω) and the dispersion
law of the propagating excitations. In [5] we have shown in a simple example of transverse
dynamics in binary liquids how the main contributions to the transverse spectral functions
Cαα(k, ω) behave as functions of the wavenumber. The case of longitudinal dynamics is much
more complicated because of the strong influence of several relaxing processes due to thermal
and mutual diffusion and structural relaxation, the amplitudes of which A j(k) can in general
be of different sign beyond the hydrodynamic region. And only a theoretical analysis like the
GCM approach, which permits consistent calculation of eigenmodes and mode contributions,
can correctly produce the dispersion law in the whole k-range studied.
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2.2. Details of molecular dynamics simulations

Computer simulations for Li4Pb were performed in the standard microcanonical ensemble on
a model system of 4000 particles in a cubic box subject to periodic boundary conditions at the
temperature of 1085 K and mass density 3556.76 kg m−3. The pair potentials �i j(r), taken
from [15], were the same as those used in previous studies of dynamics in Li4Pb [1, 9]. The
fourth-order Gear algorithm with the time step δt = 1 × 10−15 s was used for integrating the
equations of motion. The production run was of 3 × 105 steps, and 11 k-points were sampled
in the MD simulation. The smallest wavenumber reached in the simulations for Li4Pb was
kmin = 0.1414 Å−1.

Additional MD simulations were performed for an equimolar Lennard-Jones liquid at
temperature T = 116 K and numerical density n = 0.0182 Å−3. The parameters of the
Lennard-Jones potentials were taken from [16] and corresponded to a KrAr mixture. Five
production runs with a system of 864 particles in a cubic box were performed for mixtures
with different mass ratio of components: starting from the KrAr system with mass ratio
mKr/mAr = 2.098 we increased the mass ratio keeping the average mass constant in order to
provide identical static properties for the five systems. The four other mass ratios were the
following: mh/m l = 4.65, 8.63, 12.39, 17.12. The composition of the Lennard-Jones liquid
mixture was the same in these five MD runs. In general 22 k-points in the range 0.1735–
3.96 Å−1 were sampled in the MD simulations.

The time evolution of the basis dynamical variables was obtained from regular production
runs over 3 × 105 time steps, while for the three lowest k-values, in order to obtain the desired
convergenceof the relevant static averages and time correlation functions, the five systems with
different mass ratio were simulated over 2.1 × 106 time steps. For reducing the dimension
of relevant quantities the following energy, mass, spatial and timescales were used in our
simulations: ε = kBT , µ = m̄, σ = 5.764 Å, τ = σ(µ/ε)1/2 = 4.598 ps.

All the static and time correlation functions needed for estimation of matrix elements
of the matrices of time correlation functions F(k, t) and their Laplace transforms F̃(k, z)
were directly evaluated in computer simulations. The eigenvalues and eigenvectors of the
generalized hydrodynamic matrix T(k) were calculated for each k-point sampled in molecular
dynamics. Thus, in our GCM approach there were no fitting or free parameters.

3. Results

The main motivation for this study of spectra dependence on mass ratio in liquid binary mixtures
was the GCM results of the collective dynamics in the liquid metallic alloy Li4Pb obtained
using the following eight-variable extended basis set:

A(8) = {nt(k, t), nx(k, t), J L
t (k, t), J L

x (k, t), ε(k, t), J̇ L
t (k, t), J̇ L

x (k, t), ε̇(k, t)}, (5)

where the hydrodynamic variables reflecting the slowest fluctuations in the binary liquid are:
total density nt(k, t), mass–concentration density nx(k, t), total longitudinal mass-current
J L

t (k, t) and energy density ε(k, t). The variables with overdots correspond to the first time
derivatives of the relevant fluctuations and are supposed to describe correctly more short-time
processes than the hydrodynamic ones. The advantage of the GCM approach is in the consistent
treatment of short-time processes in liquids which are orthogonal to the hydrodynamic ones.
For example, the extended variable of longitudinal mass–concentration current J L

x (k, t) is
orthogonal to all hydrodynamic variables. This permits one to study kinetic collective processes
in liquids which cannot be described by hydrodynamic theory. The choice of the eight-variable
basis set (5) is defined by several factors:
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Figure 2. Propagating eigenmodes of liquid metallic alloy Li4Pb at 1085 K obtained from the
eight-variable (5) GCM treatment: frequency (imaginary parts) and damping coefficients (real
parts) of propagating collective excitations. Open boxes correspond to high-frequency excitations,
which in the long-wavelength region behave as kinetic optic phonon-like excitations.

(i) it must contain all hydrodynamic variables;
(ii) fluctuations of the total and mass–concentration currents and their time derivatives must

be treated on the same level of approximation;
(iii) we may restrict our GCM treatment of short-time processes with the first time derivatives

of the currents and energy, because our previous GCM studies of pure and binary
liquids [5, 18] revealed that the second and third time derivatives of hydrodynamic
variables in the basis set are responsible for additional kinetic excitations with very small
lifetime, which can only marginally modify the eigenvalues obtained with the basis sets
restricted by the first time derivatives of the currents and energy.

The eight-variable treatment (5) of the collective dynamics in Li4Pb results in two pairs of
complex-conjugated eigenvalues z j (k) = σ j (k) ± iω j (k) in the whole range of wavenumbers
studied. In figure 2 we show the real (damping coefficients) and imaginary (dispersion) parts
of two branches of propagating eigenmodes in molten Li4Pb. Four purely real eigenvalues
d j(k) were obtained in the whole k-region studied. The three lowest relaxing modes d j(k) are
shown in figure 3. One can see in figure 2 that the branches of propagating modes represent
two processes well-separated in frequency. A detailed analysis of all dynamical eigenmodes
in Li4Pb can be found in [17]. Our main interest here is in the behaviour of the high-frequency
branch in the long-wavelength region. In contrast to the results of the numerical analysis
of MD-derived current–current spectral functions [9], where a merger of two branches in
long-wavelength region was reported, we clearly observe in our theoretical GCM analysis
the behaviour of the high-frequency branch in the small-k region similar to that of optic
phonon-like excitations, which in liquids belong to kinetic collective excitations and have
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Figure 3. Three lowest real eigenmodes of liquid metallic alloy Li4Pb at 1085 K obtained from the
eight-variable (5) GCM treatment, which reflect generalized thermal diffusion (filled circles) and
relaxing processes in light (filled triangles) and heavy (open triangles) subsystems. In the long-
wavelength limit the filled triangles and filled circles tend to zero, and the open triangles correspond
to a kinetic relaxing mode with expected asymptote a−bk2 shown by the dashed curve. The results
of separated GCM treatment of heat processes and partial dynamics of the heavy subsystem are
shown by the double-dashed and dash–dotted curves, respectively.

finite damping coefficient in k → 0 limit [7]. One can observe a systematic increase of
the damping coefficient Re[zhigh(k)] in the long-wavelength region when k → 0. The low-
frequency branch of propagating excitations displays an interesting ω(k) dependence. It has
a pronounced minimum at k ≈ 1.45 Å−1, which is at the main maximum location of the static
structure factor SPbPb(k). However, this low-frequency branch has another minimum in the
dispersion law at k ≈ 0.25 Å−1. Such a minimum is never observed in binary liquid mixtures
with comparable masses of species and concentrations. However, it is obvious that for the
disparate-mass liquid mixtures there should exist a qualitative difference in the spectra of
collective excitations between two cases of comparable concentrations and low concentration
of the heavy component. In the latter case one could expect either the absence of the low-
frequency branch in the spectrum of collective excitations in long-wavelength region with
the high-frequency branch of light subsystem continuously transforming into hydrodynamic
sound towards k → 0, or continuous transformation of the low-frequency branch into a linear
dispersion law with rather high slope when k → 0. Namely, this scenario can explain the
minimum in the dispersion law of the low-frequency branch at k ≈ 0.25 Å−1: if one assumed
the linear dispersion at the smallest k-point of 0.1414 Å−1, then we obtain the propagation
speed of low-frequency excitations as c = 1970 m s−1, which is very close to the hydrodynamic
value of the speed of sound from [9]. Hence, if there exists a crossover from hydrodynamic
to ‘partial’ character of the low-frequency branch around k ≈ 0.25 Å−1, then this can explain
the observed features of low-frequency dispersion. The behaviour of the real parts of low-
frequency excitations supports the fact that the smallest k-point reached in MD simulations
is outside the hydrodynamic region and the k2-dependence of hydrodynamic sound damping
is not observed in the lower frame of figure 2. However, there exists a rather wide region,
0.15 Å−1 < k < 1.5 Å−1, in which the real parts of the low-frequency branch behave almost
linearly with k, which is in agreement with our previous GCM studies of generalized sound
excitations in metallic Pb [18] and semimetallic Bi [19], for which the damping of generalized
sound excitations increased linearly with k beyond the hydrodynamic region.

In figure 3 we show the k-dependence of three main relaxing processes, which reflect
heat relaxation (filled circles) and relaxing processes in light (filled triangles) and heavy (open
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triangles) subsystems for k > 0.25 Å−1. The way we identified the k-dependence of each
relaxing process among the four real eigenvalues was the same as we used in our previous study
of the liquid Lennard-Jones mixture KrAr [20], which consists of applying separated subsets of
dynamical variables within the GCM approach. Figure 3 shows, by the double-dash and dash–
dotted curves, the behaviour of the lowest real eigenvalues, obtained from the 2 × 2 and 3 × 3
generalized hydrodynamic matrices generated on the separated sets A(2h) = {h(k, t), ḣ(k, t)}
(h(k, t) is a dynamical variable of heat density, which is orthogonal to both dynamical
variables of total and mass–concentration density fluctuations) and A(3Pb) = {nPb(k, t),
J L

Pb(k, t), J̇ L
Pb(k, t)}, respectively. It is clearly seen that for k > 0.25 Å−1 the relaxing process

shown by open triangles is completely defined by the heavy subsystem of Pb atoms. For
smaller wavenumbers this relaxing mode continuously changes into a kinetic relaxing process
with a finite relaxation time in the long-wavelength limit and which should have an asymptote
dkin = a − bk2 for k → 0 similar to that observed for other pure and binary liquids [18, 20]
(the quantities a and b are defined by the kinematic viscosity DL ). The filled triangles in
figure 3 in the long-wavelength region correspond to the relaxing process of mutual diffusion.
With increasing wavenumbers this relaxing process describes solely the light subsystem of Li
atoms: a well-pronounced minimum of this dependence d(k) at k ≈ 2.35 Å−1 is located right
at the position of the main peak of the partial static structure factor SLiLi(k).

All the collective propagating and relaxing modes shown in figures 2 and 3 contribute
to the shape of the dynamical structure factors Sαβ(k, ω) with k-dependent mode amplitudes
according to (3). Here we will focus on the symmetric mode contributions B j(k) coming
from the high- and low-frequency propagating excitations in Li4Pb to the shape of dynamical
structure factors Stt (k, ω) and SLiLi(k, ω) in order to explain the results obtained in the earlier
studies of dispersion of collective excitations in Li4Pb [1, 9] and which were based solely
on numerical analysis of partial spectral functions Sαα(k, ω) and Cαα(k, ω), α = Li, Pb.
In figure 4(a) are shown the symmetric amplitudes B j

tt (k) obtained in our eight-variable
GCM analysis of the collective dynamics in molten Li4Pb, which reflect contributions from
the two propagating branches to the dynamical structure factor Stt (k, ω) defined by the
hydrodynamic variables of total density. It is important that for Stt (k, ω) there exist analytical
hydrodynamic results [21], which estimate the symmetric contribution Bsound(k → 0) coming
from hydrodynamic sound excitations at the value γ −1. Our estimate for the ratio of specific
heats in molten Li4Pb is γ = 1.15 (see [17]); hence the contribution from the sound excitations
to the Stt (k, ω) in the long-wavelength limit should be ≈0.87. In figure 4(a) one can see how
the role of different propagating modes changes towards the long-wavelength region: in the
region 0.5 Å−1 < k < 1.8 Å−1 the main contribution to the side peaks of Stt (k, ω) comes from
the high-frequency branch, while for smaller wavenumbers there exists a crossover in the main
contributions from the two propagating processes: the mode contribution from the kinetic high-
frequency branch tends to zero, while the one from generalized sound excitations increases
up to its hydrodynamic value of ≈0.87 when k → 0. In order to make a direct comparison
with the results by Bosse et al [1] we show in figure 4(b) the mode contributions B j(k) to the
partial dynamical factor of the light component SLiLi(k, ω). Again, there exists a crossover
in the mode contributions from two propagating processes in the region k ≈ 0.3 Å−1, which
means that even the partial correlations of the light component reflect in the long-wavelength
region solely hydrodynamic sound excitations, but not some ‘fast sound’ excitations. Our
GCM results for Li4Pb permit us to explain the ‘fast sound’ observation [1] as a crossover
in the mode contributions from the high- and low-frequency branches to the partial spectral
functions, while the correct dispersion and damping of the propagating eigenmodes in the
long-wavelength region behave as shown in figure 2. The large mass ratio R ≈ 30 in the
case of Li4Pb is responsible for a large frequency gap between the two branches of high- and
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Figure 4. Amplitudes of symmetric mode contributions B j (k) from high- and low-frequency
propagating excitations to the shape of the dynamical structure factor ‘total density–total density’
Stt (k, ω) (a) and the partial dynamical structure factor of the light component SLiLi(k, ω) (b) for
liquid Li4Pb. The partial dynamical structure factor SLiLi(k, ω) was used in [1] for estimation of
the ‘fast sound’ dispersion. Open and filled boxes correspond to the same branches as in figure 2.
Solid curves are the spline interpolation.

low-frequency excitations and an extended range of ‘partial’ behaviour of the two branches
towards longer wavelengths. These last statements we will discuss in more detail in an example
of Lennard-Jones liquid mixtures.

For comparison with the spectrum of a molten alloy with disparate mass discussed above,
we show in figure 5 the spectrum of the propagating collective modes in a Lennard-Jones
equiatomic liquid with a small mass ratio. The eight-variable GCM analysis (5) of the
collective dynamics in liquid KrAr at 116 K yields three branches of propagating excitations:
two branches of propagating density fluctuations (open and filled boxes in figure 5) and one
corresponding to low-frequency heat waves (‘plus’ symbols in figure 5) in the liquid mixture.
For k > 0.5 Å−1 the two branches shown by the open and filled boxes have nearly the
same damping coefficients, while in the region of small wavenumbers the branch shown with
open boxes tends to a finite nonzero damping coefficient, that is a specific feature of kinetic
collective modes. The branch shown by filled boxes has an almost linear dispersion law in the
long-wavelength region ω(k) = ck with the slope c = 808 m s−1, while the corresponding
real parts of the eigenvalues for k < 0.3 Å−1 behave almost proportional to k2. In [7] we
identified the two branches in liquid KrAr in the small-k region as generalized sound and optic
phonon-like collective excitations. One can compare the two dispersion curves obtained by
the GCM approach (shown by open and filled boxes in figure 5) with the results of numerical
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Figure 5. Complex eigenmodes of equiatomic Lennard-Jones KrAr liquid at 116 K: frequency
(imaginary part) and damping coefficients (real parts) of the propagating collective excitations.
Open boxes correspond to kinetic optic-like excitations, filled boxes to generalized sound
excitations, and ‘plus’ symbols to low-frequency heat waves.

estimation of the dispersion from the maxima positions of the partial current spectral functions
Cαα(k, ω), α = Kr, Ar: the main difference is observed in the long-wavelength region, where
the high-frequency branch in figure 1 does not tend to a finite nonzero frequency at k → 0.
Such a discrepancy is evidence of an inadequacy of the numerical estimation of the dispersion
of the high-frequency branch from the maxima positions of the partial current spectral functions
in the long-wavelength region.

In order to understand in detail the formation of high-frequency collective excitations in
liquid mixtures with disparate mass we show in figure 6 the behaviour of the high-frequency
branches in an equimolar Lennard-Jones liquid mixture with different mass ratio, but the same
mass density and interatomic potentials. The results of the 8 × 8 eigenvalue problem for
two branches of propagating excitations in the reference KrAr liquid mixture with mass ratio
R = 2.098 are shown by ‘plus’ symbols. The results for propagating excitations obtained by
solving the 3×3 eigenvalue problem for the generalized hydrodynamic matrix constructed only
on the partial dynamical variables A(3α) = {nα(k, t), J L

α (k, t), J̇ L
α (k, t)}, where α corresponds

to heavy and light component in the mixture, are shown by dashed and solid lines, respectively.
This means that the branches obtained within the general eight-variable treatment (shown by
symbols) in the region of intermediate and large wavenumbers correspond well to the ‘partial’
character of the collective dynamics,while in the longer-wavelength region a treatment in terms
of hydrodynamic fluctuations and processes orthogonal to them is necessary. In figure 6, the
dispersion of the high-frequency branch in the Lennard-Jones liquid mixture for mass ratios
R = 4.65, 8.63, 17.12 are shown by asterisks, open boxes and filled boxes, respectively.
The general tendency with increasing mass ratio is twofold: (i) increasing the frequency of the
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Figure 6. Dispersion curves obtained from the eight-variable GCM treatment A(8) for two branches
of propagating excitations in liquid KrAr (plus symbols) and high-frequency branches for the mass
ratio: 4.65 (asterisks), 8.63 (open boxes), 17.12 (filled boxes). The solid lines correspond to
propagating eigenvalues obtained from the three-variable A(3α) treatment of the light subsystem,
while the dashed line reflects the branch of the Kr subsystem in KrAr liquid. The solid and dashed
lines are shown only in regions of wavenumbers where a good correlation with the eight-variable
results (symbols) was observed. The change in the correlation region provides evidence that the
range of ‘partial’ character of branches extends towards smaller wavenumbers against increasing
mass ratio.

optic-like branch, and (ii) extending the range of the ‘partial’ character of the dynamics towards
the region of small wavenumbers. For all studied values of R we observed the typical behaviour
of the high-frequency branch, as for optic phonon-like excitations. In the next section we will
discuss the damping coefficient of optic-like modes and its dependence on the mass ratio.

4. Discussion

We will discuss the results obtained using a separated treatment of processes in the long-
wavelength region connected with slow mass–concentration fluctuations and fast mutual
current fluctuations orthogonal to them. Let us consider a three-variable basis set:

A(3x) = {nx(k, t), J L
x (k, t), J̇ L

x (k, t)}. (6)

Here the only hydrodynamic variable is

nx(k, t) = 1

m̄
{m1x2n1(k, t) − m2x1n2(k, t)} ≡ m1m2

m̄2
nc(k, t), (7)

which describes the slowest mass–concentration fluctuations in a binary liquid;

nα(k, t) = 1√
N

Nα∑
i=1

eikrα,i (t), α = 1, 2,

are the ordinary variables of partial densities, and mα and xα = mαcα/m̄ are the atomic
masses and mass–concentration factors, respectively. The reason for introducing the dynamical
variable nx(k, t) in the form (7) is that it is proportional to the ordinary concentration density
nc(k, t) and at the same time it is connected to the longitudinal component of the mass–
concentration current J L

x (k, t) (introduced in [5]) by a simple relation:

∂nx

∂ t
= ik

m̄
J L

x (k, t). (8)
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The mass–concentration density nx(k, t) is a hydrodynamic variable and along with the
dynamical variables of total density nt(k, t), total mass-current density Jt(k, t) and energy
density ε(k, t) it is commonly used for the hydrodynamic description of any binary system in
the liquid state. It was shown in [5] that Jx(k, t) is an orthogonal dynamical variable to Jt(k, t),
and its real space representation reflects the out-of-phase motion for neighbours of different
type.

In the basis set (6) the J̇ L
x (k, t) is the first time derivative of the longitudinal mass–

concentration current. The only hydrodynamic variable in this basis set is nx(k, t), while the
two other dynamical variables describe shorter-time fluctuations. The basis set (6) corresponds
to the same level of short-time fluctuation treatment as was applied in the analytical study of
the transverse dynamics in binary liquids [5, 6]. Solving analytically the eigenvalue problem
for the 3 × 3 generalized hydrodynamic matrix T(k) in the long-wavelength limit, one obtains
the following dynamical eigenmodes: (i) the lowest eigenvalue is purely real and simply reads

d(k) = D12k2, (9)

where D12 is the mutual diffusion coefficient [21] taking into account that no other slow
processes contribute to the shape of Fxx (k, t) within our three-variable model; (ii) a complex-
conjugated pair of eigenvalues, which tend in the long-wavelength limit to some constant
values:

z±(k → 0) = �(k) ± i
√

ω2
Jx Jx

(k) − �2(k), (10)

where

�(k) = m̄D12ω
2
Jx Jx

(k)Sxx (k)

2x1x2kBT
≡ m1m2 D12ω

2
Jx Jx

(k)Scc(k)

2c1c2m̄kBT
(11)

is the damping of optic phonon-like excitations (mass–concentration waves) in the limit k → 0
and the imaginary part of z±(k) represents their frequency. The quantity

ω2
Jx Jx

(k) = 〈 J̇ L
x (−k) J̇ L

x (k)〉
〈J L

x (−k)J L
x (k)〉 , (12)

is in fact the ratio of the fourth and second frequency moments of the dynamical structure
factor Sxx (k, ω) in the standard definitions of [22], and the static average 〈 J̇ L

x J̇ L
x 〉 tends to a

constant in the k → 0 limit.
Let us analyse the damping �(k → 0) of optic phonon-like excitations in the long-

wavelength region. There is very rich physics hidden in expressions (10) and (11). In [7]
we focused on two main processes which can suppress the propagation of optic phonon-like
excitations in binary liquids: the high mutual diffusivity D12 and the demixing tendency, when
the atoms are surrounded mainly by like ones and Sxx (k → 0) takes large values. Let us look
now at the damping coefficient of long-wavelength optic excitations from the point of view of
mass ratio R = mh/m l dependence, where mh = mKr + δ and m l = mAr − δ are the heavy
and light masses in the equimolar mixture. Note that mh and m l tend to a constant and zero,
respectively. Among the factors which determine the mass-ratio dependence of the damping
coefficient � (10) of the long-wavelength optic-like excitations are:

(i) a factor mhm l ≡ m2
h/R in the numerator, which is a decaying to zero function of R;

(ii) a quantity ω2
Jx Jx

(R), which we can calculate numerically in MD simulations via the
definition (12); and

(iii) the mutual diffusivity D12(R) for which we can use either analytical results known for the
hard sphere systems [23, 24] or make some estimates from our MD simulations.
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five Lennard-Jones systems with different mass ratio (shown by line-connected symbols). The
coefficient of the k2 dependence of the lowest relaxing mode dx (k), which defines mutual diffusivity
in the binary liquids, is shown by asterisks.

In figure 7 we show that the quantity ω2
Jx Jx

(kmin) obtained directly in MD simulations
depends linearly on the mass ratio R. This quantity, in fact, is the square of the frequency of
‘bare’ optic-like excitations at k = kmin. Due to the interaction with the relaxing process of
mutual diffusivity, the frequency of the optic-like modes reduces from its ‘bare’ value according
to (10). A similar quantity ω2

Jt Jt
(kmin), which is the square of the frequency for ‘bare’ acoustic

excitations, does not change with the mass ratio R; that is correct because this quantity is
defined solely by the total density, which is constant. The linear dependence of ω2

Jx Jx
(k → 0)

on the mass ratio implies that its product with mhm l should tend to a constant at large R. Hence,
the leading dependence of the damping � on the mass ratio R should be due to the mutual
diffusivity D12(R). We have calculated the self-diffusion coefficients of the light Dl(R) and
heavy Dh(R) subsystems for the five Lennard-Jones liquid mixtures with the same total density
from the linear asymptote of mean-squared displacements (see figure 8). Both self-diffusion
coefficients increase with the mass ratio R. In figure 8, the coefficient of the k2 dependence
for the lowest relaxing eigenvalues in the long-wavelength region (see equation (9)), which
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Figure 9. Dependence of the damping coefficient � (10) for optic phonon-like modes within the
three-variable treatment A(3x) (open boxes connected by solid line) on mass ratio for the smallest
wavenumber of 0.1735 Å−1.

correspond to the process of mutual diffusion, are shown by asterisks. It should be mentioned
that D12 obtained in this way may have some, presumably small, contribution from the thermal
processes (see [21]). The mutual diffusivity D12(R) takes values between both self-diffusion
coefficients as it should, and changes slowly for small mass ratio, while it displays an almost
linear with R behaviour at large mass ratio.

In figure 9 we show how the damping of the optic-like modes �(kmin), evaluated within the
three-variable model (10) at the smallest k-point sampled in our MD simulations of Lennard-
Jones mixtures, increases against the mass ratio in agreement with our arguments. It is
remarkable that this dependence is very similar to the dependence of D12(R) in figure 8
as follows from expression (11). Hence, our analysis has shown that the damping coefficient
of long-wavelength optic-like excitations in liquid mixtures increases with mass ratio R.

More interesting is the dependence of the damping of optic-like excitations on molar
composition in the liquid mixtures, which is more difficult to study because all the static
structural properties will change. Such a GCM study of the concentration dependence of
spectra of collective excitations in binary liquids is in progress and will be presented elsewhere.

5. Conclusions

We summarize this study with the following remarks.

(1) The spectrum of propagating collective excitations in liquid metallic alloy Li4Pb obtained
from the parameter-free eight-variable GCM treatment consists of two branches of
collective excitations. The high-frequency branch in the long-wavelength region shows
the typical behaviour of overdamped optic phonon-like excitations.

(2) We have shown how the mode contributions from the high- and low-frequency propagating
excitations to the two dynamical structure factors of main interest behave in a wide region of
wavenumbers. It follows from the theoretical GCM treatment of the longitudinal dynamics
in molten Li4Pb, that the kinetic high-frequency excitations identified in the long-
wavelength region as optic phonon-like modes do not contribute to the partial dynamical
structure factor of the light component when k → 0, while the main contribution to
the Brillouin side peak should be due to sound excitations in the long-wavelength limit.
Hence, the ‘fast sound’ phenomenon reported in [1] can be explained by our GCM results
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as follows: because of the huge mass ratio in Li4Pb the ‘partial’ character of the branches
of the collective excitations is extended down to approximately 0.5 Å−1; for smaller
wavenumbers a crossover to hydrodynamic behaviour takes place, which is reflected in
the vanishing contribution from the high-frequency kinetic branch and the increasing
contribution from the sound excitations to the partial dynamical structure factor SLiLi(k, ω).
Such a crossover in mode contributions to SLiLi(k, ω) causes a ‘fast sound’-like dispersion
curve when it is estimated numerically from the Brillouin peak position of SLiLi(k, ω);

(3) In order to clarify the tendency in the frequency and damping coefficients for optic-like
excitations in disparate mass mixtures we performed a GCM study of collective dynamics
in Lennard-Jones liquid mixtures with different mass ratio. Our analytical three-variable
analysis shows that the frequency and damping coefficient of the long-wavelength optic-
like excitations increase with the mass ratio R.
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